Pre-Ph.D. Course work Syllabus

Pre-Ph.D. Course Work Mathematics (Effective from 2022) Structure

Sem.	Paper Code	Title of the Paper	No. of Lectures(hrs.)/Duration	Credits
One	H-049	Research Methodology	60	04
		Advanced Mathematics I	60	06
		Advanced Mathematics II	- 60	06
		Survey/Research Project	One semester	Qualifying

Curriculum & Syllabus NEP (2022), 104, MATHEMATICS

Pre-Ph.D. COURSE WORK PAPER I, RESEARCH METHODOLOGY

	ame: Pre-Ph.D. arse work	Duration: Six Mon	oths		Semester: First
		Subject: Mathe	ematics		
Course Code: H-049 Course Title: Research Methodology			Theory		
 Identif Identif Identif Identif approg Identif report 	fy and discuss the fy and discuss the fy and discuss the priate research de fy and discuss the ing.	in objective of this pape role and importance of r issues and concepts salid complex issues inherent sign, and implementing a concepts and procedures	esearch i ent to the in select research s of samp	research p ing a resea project. pling, data	process. arch problem, selecting ar collection, analysis and
O1. Unders O2. Explair eir academi O3. Select a O4. Organiz O5. Write a	tand some basic o n key research cor ic discipline. and define approp		its metho mpreher nd param	dologies. d, and exp eters.	lain research articles in
	research propose	al (grants).			
	Credits:			Core (Compulsory
		4			Compulsory ssing Marks:
	Credits: Max. Marks:	4	ı hours j	Min. Pa	ssing Marks:
Unit	Credits: Max. Marks:	4 100	n hours j	Min. Pa	ssing Marks:
	Credits: Max. Marks: Total No. o Perception & Motivations o Research, Res Research, Rev Problem, Sou Status of the	4 100 f Lectures-Tutorial (in	earch, C of Resea ethodolo ilation o f a Rese	Min. Pa per week) Dbjectives rch, Type gy, Proces f the Resea arch Probl	Assing Marks: : L-T: 4-1 No. of Lectures 50 & s of s of arch em, 10

O.

)

C

)

)

)

CHAUDHARY CHARAN SINGH UNIVERSITY, MEERUT

	Sciences, Project Proposal, Project Report Writing, Research Paper Writing, Thesis Writing, Referencing, Formats of Writing References, Bibliography, Plagiarism, IPR, Technology Development and Transfer.	
III	Types and Sources of Data, Data Collection Methods, Analysis of Data, Kertosis variance, Central Tendency, Dispersion, Skewness, Correlation, Regression, Probability (Elementary), Binomial, Poisson and Normal Distribution, Baye's rule and Independence of events, Chi-square test.	10
IV	Computer Networking, Internet, Web Browsers, Search Engines, MS Word: Handling graphics tables and charts, Formatting in MS-Word, MS Power point: Creating Slide Show, Screen Layout and Views, Applying Design Template, MS Excel: Features, Formulas and Functions, Number system, Computer codes, BCD Code, EBCDIC, ASCII, Computer Arithmetic.	10
v	Subject Classification Index, Citation, Citation Index, Impact Factor, h-index, i-10index, INFLIBNET, Introduction to Peer Reviewed and Open Access Journals, e-Journals, e-Library, Research Databases in Physical Sciences: Web of Science, Scopus, Science-Direct etc.	10
class activ	Learning Process: Class discussions/ demonstrations, Power point pr rities/ assignments, Field visits., Internship, etc.	esentations,
 Cresw (3rdEdi Gupta Publica Gupta Kuma Inc., 20 Melvil Acadea Shorti 	 al Readings: ell. W.: Research Design, Qualitative, Quantitative and Mixed Methodition), SAGE, Inc., 2018. S: Research Methodology: Methods and Statistical Techniques, Deepations, 2010. S.P.: Statistical Methods, Sultan Chand &Sons, 2014. r. R: Research Methodology: A Step-by-Step Guide for Beginners (3rd) Oll. Ile. S. and Goddard. W.: Research Methodology: An Introduction (2rd) mic, 2004. s. T.: The Language of ICT: Information and Communication Technols, 2016. 	^d Edition), SAGE, ^d edition),Juta

0

0

0

0

0

0

0

Q

0

0

0

0

0

0-0-0-

·Ò

0

Ò

0-0-0-0-0-0

0

)

Э

Pre-Ph.D. COURSE WORK PAPER II, ADVANCED MATHEMATICS I

Programme: Pre- Ph.D. Course work	Duration: Six m	onths	Semester: First
	Subject: Ma	thematics	
Course Code:	Course Title: Adv	ance Mathematics I	Theory
 To learn the concept Smirnov Metrization Learn the concept of Optimization, Fuzzy Learn the concept of finite field, Uniquern group of a polynom 	sic concept of reliability of of Convergence of network in theorem, Bing Metrizat of Constructions of Fuzzy control and fuzzy exper fautomorphism on a finitiess of the splitting field, al over a field. Sic concept of Vedic m end of this course, the standing thoroughly account rstanding thoroughly account	s and filters Para com ion theorem y Sets and Operations t systems, te field, Structure of r Solvability by radica athematics udents should be able erstand real world ap concepts of non-line ount for industrial ap	pactness and Nagata- on Fuzzy Sets, Fuzzy multiplicative group of a ls, Solvability of Galois e to: plications. ar programming, stability plications of different
Credit	s: 6	Core	Compulsory
Max. Mar	s: 100	Min. Pa	assing Marks:
Total No	of Lectures-Tutorial	(in hours per week)): L-T: 6-0
Unit	Topics		No. of Lectures 60
I Nonlinear p Quadratic	orogramming, Kuhn-Tuc programming: Wolf	· ·	tion, 10 eger
.4.12			

Curriculum & Syllabus NEP (2022). 107 MATHEMATICS

	programming: Modeling using pure and mixed integer programming. Branch and Bound technique. Gomory's cutting plane algorithm.		
I	Basic Concepts of Reliability: General Reliability Function, Failure and Failure modes, Hazard Rate, Bath tub Curve, Mean Time to Failure, Availability concepts. System Reliability: Reliability of Series, Parallel, Stand by Redundancy, k-out-of-n Configuration, Series-Parallel, Parallel-Series configurations and Bridge Structure.	10	
[]	Convergence of nets and filters, Arbitrary product of topological spaces, Arbitrary product of connected spaces, Path connectedness, Compactness: Compactness through nets and filters, Tychonoff' theorem, Urysohn metrization theorem , Stone-Cech compactification, Para compactness and Nagata- Smirnov Metrization theorem, Bingmetrization theorem.	10	
V	Constructions of Fuzzy Sets and Operations on Fuzzy Sets, Fuzzy Optimization, Fuzzy control and fuzzy expert systems, Fuzzy Inference: Composition rule, Fuzzy rule and Implication, Inference Mechanism, Inference methods, Fuzzy Sets in Decision-Making: Fuzzy Rank Methods& ordering, Multi criteria Decision Making, decision- making under Fuzziness.	10	
V	Automorphism on a finite field, Structure of multiplicative group of a finite field, Uniqueness of the splitting field, Determining the degree of the splitting field of polynomials over a field, Finding the splitting field of polynomials over a field, Galois group of a polynomial over a field, Determining the elements of the Galois group of polynomials over a field, Solvability by radicals, Solvability of Galois group of a polynomial over a field.	10	ing a constant
/I	16 Sutra And 13 Sub Sutras of Vedic Mathematics, Explanations of Ekadhiken Purvena, Eknueyena Purvena, Urdhwa Triyagbhyam Sutra. Contribution of Indian	10	l

Mathematicians Madh	van, Parmeshvaran,	Manjul	Bhargav	,	ļ
Shakuntala Devi					Ì

Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments, Field visits., Internship, etc.

Suggested Continuous Evaluation Methods:

Continuous internal evaluation through internal tests quizzes and Presentation. Course prerequisites: To study this course, a student must have had the subject

Mathematics in PG degree.

Suggested equivalent online courses:

There are online courses on the channels such as Swayam Prabha, and NPTEL. E-contents from different online libraires.

Further Suggestions:

Suggested Readings:

- 1. Balagurusamy. E: Reliability Engineering, Tata McGraw Hill Publications, New Delhi, 2010.
- 2. Dubosisand. D, Prade. H: Fuzzy Sets and Systems Theory and Applications, Academic Press, New York, 1980.
- 3. Bazara. M. S., Sherali. H.D, Shetty .C.M: Nonlinear Programming-Theory and Algorithms (3rd Edition), John Wiley& Sons, Inc., Hoboken, New Jersey, 2006.
- 4. Bourbaki.N: General Topology, Part-I, Addison-Wesley, 1966.
- 5. Cai, Kai-Yuan: Introduction to Fuzzy Reliability, Kluwer Academic Publishers, Boston/Dordrecht/London,1996.
- 6. Chauthaiwale. Shriram .: Enjoy Vedic Mathematics", Art of Living international Bangluru, India
- 7. George J. Klir and BoYuan: Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall of India, New Delhi, 2009.
- 8. Lidl. R., Niederreiter. H : Introduction to Finite Fields and their Applications (2nd Edition). Cambridge University Press, 1994.
- 9. Munkres, J.R.: Topology, Pearson Education Pvt Ltd, Delhi, 2018.
- 10. Taha.H.A: Operations Research-An Introduction (10thEdition), Pearson Publication, 2017.

Curriculum & Syllabus NEP (2022) 169 MATHEMATICS

0

.)

 \odot

0

)

0

0

Э

Э

0

0

Θ

0

2

C

)

C

0

0

0

)

)

D

Э

J

)

)

0

Pre-Ph.D COURSE WORK PAPER II, ADVANCED MATHEMATICS II

	me: Pre-Ph.D.	: Pre-Ph.D. Duration: Six months Semester: First		mester: First
		Subject: Mathematic	S	
Cou	rse Code:	Course Title: Advance Ma	thematics II	Theory
 To stu To stu To stu betwee To stu To stu To stu To stu 	dy the basic cor dy the Reliabilit dy the basic con en two parallel pl dy the Secret ke dy the Inner pro	jective of this paper is neept of inventory theory, den y Evaluation Techniques, Soft cept of stability theory, Norma lates. y cryptography and Public key duct spaces, Hilbert spaces. e and Its Applications, Integral	vare Reliability. I mode technique cryptography.	s, stability of flow
CO1. Comp	rehend the dynan	pletion of this course, students nics of inventory management' y chain (customer demand, dist	s principles, cond	
CO3. Provid cryptography CO4. Under	e security of the and network se	r industrial applications of diffe data over the network, Do rese curity of dot product and Hilbert spa	erent methods in arch in the emerg	reliability theory ging areas of
CO2. Thoron CO3. Provid cryptography CO4. Under	e security of the and network sec stand the notions	r industrial applications of diffe data over the network, Do rese curity of dot product and Hilbert spa ns	erent methods in arch in the emerg	reliability theory ging areas of spectral theorem to the
CO2. Thoron CO3. Provid cryptography CO4. Under	e security of the and network sec stand the notions integral equation	r industrial applications of diffe data over the network, Do rese curity of dot product and Hilbert spa ns	erent methods in arch in the emerg ce and apply the	reliability theory ging areas of spectral theorem to the pulsory
CO2. Thoron CO3. Provid cryptography CO4. Under	e security of the y and network sec stand the notions integral equation Credits: Max. Marks	r industrial applications of diffe data over the network, Do rese curity of dot product and Hilbert spa ns	erent methods in arch in the emerg ce and apply the Core Con Min. Passin	refiability theory ging areas of spectral theorem to the upulsory ng Marks:
CO2. Thoron CO3. Provid cryptography CO4. Under	e security of the y and network sec stand the notions integral equation Credits: Max. Marks	r industrial applications of diffe data over the network, Do rese curity of dot product and Hilbert spa ns 6 : 100	erent methods in arch in the emerg ce and apply the Core Con Min. Passin	refiability theory ging areas of spectral theorem to the upulsory ng Marks:

VI	Osculator, Recuuring Decimals, Quadratic Equations by Vedic Methods, Bi-quadratic Equations by Vedic Methods, Encryptions, Derivative and Its Applications, Integrations and Its Applications.	. 10
	arning Process: Class discussions/ demonstrations, Power point	presentations,
Suggested R	es/ assignments, Field visits., Internship, etc. eadings:	
Publica 2. Barlow 1996. 3. Chandu NewYo 4. Emine Devend 5. G., W 6. Hoffste Crypto 7. Kreysz New Y 8. Meijer 9. Naddo 10. Nath, 2 11. Rathy	 Vedaveer.: Indian Contributions to Mathematics and Astronomy ations. vand. R.F, Proschan. F.: Mathematical Theory of Reliability, Journasekhar. S.: Hydro dynamic and Hydromagnetic Stability-ChaptersI, rk, 1981. nt Bharatiya Mathematicians: Dr Shriram Chauthaiwale, Dr De dra Deshmukh published by Vidya Bharati, Kurukshetra. hitin. T.M.: Analysis of Inventory-Systems, Prentice Hall Inc., 1991. ein. J, Pipher. J, J.H. Silverman: An Introduction to graphy (2ndEdition), Springer, 2014. zig. E.: Introductory Functional Analysis with Applications, John Tork, 1978. A.R. : Algebra for Cryptologists (1stEdition), Springer, 2016. r.E; Inventory System, John Wiley & Sons, Wiley, New York, 1 L.S.Sri: Mathematical Theory of Reliability, Affiliated East West, R.K.: An Introduction of Fluid Dynamics Chapter XIII, Oxford atomy, New Delhi, 1976. 	ohn Wiley and Sons, II,VII,X, XI, Dover, wiprasad Verma 963. Mathematical Wiley and Sons, 966. t Press Pvt. Ltd, 2009
	· · · · · · · · · · · · · · · · · · ·	

Carriculum & Syllabus NEP (2022) - 115

۸ !

V THEFT

7 0 D Q 0-0-0) 0.0 5-0-0-0-0

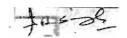
2

)

?

7

)


)

)

1. Prof. M. K. Gupta

1. Prof. Shiv Raj Singh

2. Dr. Narottam Kumar

- 3. Prof. Jaimala
- 4. Dr. Anirudh Kumar Bhargava

5. Dr. Madan Pal Singh

6. Prof. R. C. Dimri

Posini

- 7. Prof. Shri Prakash Sharma ®
- 8. Prof. D. Pandey ®
- 9. Dr. V. K. Agarwal (R)
- 10. Dr. Satya Deo Tripathi

,MATHEMATICS

-16

5

Э

3

2-2

Э

)

)

)

	· · · · · · · · · · · · · · · · · · ·	
	and lost sales, Inventory models under trade credit.	
II	Reliability Evaluation Techniques: Binomial Theorem to evaluate Network Reliability, State Space Approach, Minimal Cut Set Method, Two identical unit active and passive redundant systems with constant failure and repair rates, Software Reliability. Fuzzy Methods in Probist system, Profust Reliability Theory, Pos bist Reliability Theory.	10
III	Basic concepts of stability theory, Normal mode technique, Stability of flow between two parallel plates: Instability of an inviscid fluid layer, Instability of plane poiseuille flow. Thermal instability of layer of fluid heated from below: the Benard convection, the Boussinesq approximation, the principle of exchange of stabilities and the first variational principle.Stability of superposed fluids: the Rayleigh Taylor instability, stability of non-viscous and viscous stratified fluid, effect of surface tension, effect of rotation, effect of horizontal and vertical magnetic field.	10
IV	Secret key cryptography and Public key cryptography, The discrete logarithm problem, Discrete logarithm problem over a finite field. Diffie-Hellman Key Exchange. Elliptic curves, Elliptic curves over finite field, The elliptic curve discrete logarithm problem. Elliptic curve cryptography: Elliptic curve Diffie-Hellman Key Exchange, Elliptic curve Elgamal cryptosystem.	10
V	Inner product spaces, Hilbert spaces and their examples, Apolloniu's identity, Schwarz inequality, Triangle inequality, Orthogonality, Pythagorean theorem, Gram-Schmidt orthonormalization process, Continuity of inner product, Completion of an inner product space, Subspace of a Hilbert space, Orthogonal complements and direct sums, Projection, Projection theorem, Dual basis and dual spaces, Riesz representation theorem for bounded linear functionals on a Hilbert space, Strong and weak convergence.	10

Corriculum & Syllabus NEP (2022). III MATHEMATICS